Ad Code

Responsive Advertisement

😎PowerBi - Data Cleaning

📘 Power BI Chapter 6: Power Query Editor

🔶 1. What is Power Query Editor?

Power Query Editor is a data transformation and preparation tool within Power BI Desktop. It helps users clean, reshape, and transform raw data before it's loaded into the Power BI data model.

🔶 2. Opening Power Query Editor

To open Power Query Editor:

  • Click on "Transform Data" on the Home tab in Power BI Desktop.

🔶 3. Power Query Editor Interface

Section Description
Ribbon Contains commands like Remove Rows, Merge Queries, Group By, etc.
Queries Pane Lists all queries (tables) loaded or created.
Data Preview Shows a preview of your data with applied steps.
Applied Steps Shows the list of transformations applied to the data.
Formula Bar Displays the M code used for each step.

🔶 4. Basic Data Cleaning Operations

✅ Remove Columns

  • Home → Remove Columns → Select and remove unnecessary columns.
  • Shortcut: Right-click on the column header → "Remove".

✅ Remove Rows

  • Remove Top Rows
  • Remove Bottom Rows
  • Remove Duplicates
  • Remove Blank Rows

✅ Replace Values

  • Replace nulls or incorrect values.
  • Right-click → Replace Values → Specify "Value To Find" and "Replace With".

✅ Change Data Types

  • Automatically detected or manually set (e.g., Whole Number, Decimal, Date, Text).

✅ Rename Columns

  • Right-click on the column → Rename.

🔶 5. Column Transformations

🔹 Split Column

  • By Delimiter (e.g., comma, space, etc.)
  • By Number of Characters

🔹 Merge Columns

  • Combine multiple columns into one.
  • Option to add separators (e.g., space, comma).

🔹 Add Column from Examples

  • Home → “Column from Examples”
  • Provides a smart way to create columns by entering sample output.

🔹 Conditional Columns

  • Add logic similar to IF statements (e.g., "If score > 50 then 'Pass' else 'Fail'").

🔶 6. Advanced Data Transformations

🔹 Group By

  • Aggregates rows based on selected column(s).
  • Options: Sum, Count, Average, Max, Min, etc.

🔹 Pivot & Unpivot Columns

  • Pivot: Turns unique values in a column into multiple columns.
  • Unpivot: Converts multiple columns into attribute-value pairs (useful for normalizing data).

🔹 Merge Queries

  • Combines columns from two queries (similar to SQL JOIN).
  • Types:
    • Left Outer
    • Right Outer
    • Inner
    • Full Outer
    • Anti Joins

🔹 Append Queries

  • Adds rows from another table/query (like UNION in SQL).
  • Used for combining data from multiple sheets or files.

🔶 7. Working with Dates

  • Extract Year, Month, Day
  • Extract Day Name, Month Name
  • Create custom columns using Date.Year(), Date.Month(), etc.

🔶 8. Using M Language (Advanced)

M is the Power Query formula language. Every step in Power Query generates a line of M code. Example:

= Table.SelectRows(Source, each [Age] > 30)

🔶 9. Applied Steps

  • Each transformation you perform is recorded.
  • You can:
    • Rename steps
    • Reorder steps (carefully)
    • Delete or modify any step

🔶 10. Loading Data

After applying all transformations:

  • Click Close & Apply to load data into Power BI.
  • Data is now clean and ready for modeling and visualization.

🔶 11. Best Practices in Power Query

  • Remove unnecessary columns early to reduce memory.
  • Use descriptive names for steps and columns.
  • Avoid hardcoding values (use parameters instead).
  • Minimize the number of steps for performance.
  • Use staging queries to simplify complex transformations.

Post a Comment

0 Comments