📘 Power BI Chapter 6: Power Query Editor
🔶 1. What is Power Query Editor?
Power Query Editor is a data transformation and preparation tool within Power BI Desktop. It helps users clean, reshape, and transform raw data before it's loaded into the Power BI data model.
🔶 2. Opening Power Query Editor
To open Power Query Editor:
- Click on "Transform Data" on the Home tab in Power BI Desktop.
 
🔶 3. Power Query Editor Interface
| Section | Description | 
|---|---|
| Ribbon | Contains commands like Remove Rows, Merge Queries, Group By, etc. | 
| Queries Pane | Lists all queries (tables) loaded or created. | 
| Data Preview | Shows a preview of your data with applied steps. | 
| Applied Steps | Shows the list of transformations applied to the data. | 
| Formula Bar | Displays the M code used for each step. | 
🔶 4. Basic Data Cleaning Operations
✅ Remove Columns
- Home → Remove Columns → Select and remove unnecessary columns.
 - Shortcut: Right-click on the column header → "Remove".
 
✅ Remove Rows
- Remove Top Rows
 - Remove Bottom Rows
 - Remove Duplicates
 - Remove Blank Rows
 
✅ Replace Values
- Replace nulls or incorrect values.
 - Right-click → Replace Values → Specify "Value To Find" and "Replace With".
 
✅ Change Data Types
- Automatically detected or manually set (e.g., Whole Number, Decimal, Date, Text).
 
✅ Rename Columns
- Right-click on the column → Rename.
 
🔶 5. Column Transformations
🔹 Split Column
- By Delimiter (e.g., comma, space, etc.)
 - By Number of Characters
 
🔹 Merge Columns
- Combine multiple columns into one.
 - Option to add separators (e.g., space, comma).
 
🔹 Add Column from Examples
- Home → “Column from Examples”
 - Provides a smart way to create columns by entering sample output.
 
🔹 Conditional Columns
- Add logic similar to 
IFstatements (e.g., "If score > 50 then 'Pass' else 'Fail'"). 
🔶 6. Advanced Data Transformations
🔹 Group By
- Aggregates rows based on selected column(s).
 - Options: Sum, Count, Average, Max, Min, etc.
 
🔹 Pivot & Unpivot Columns
- Pivot: Turns unique values in a column into multiple columns.
 - Unpivot: Converts multiple columns into attribute-value pairs (useful for normalizing data).
 
🔹 Merge Queries
- Combines columns from two queries (similar to SQL JOIN).
 - Types:
            
- Left Outer
 - Right Outer
 - Inner
 - Full Outer
 - Anti Joins
 
 
🔹 Append Queries
- Adds rows from another table/query (like UNION in SQL).
 - Used for combining data from multiple sheets or files.
 
🔶 7. Working with Dates
- Extract Year, Month, Day
 - Extract Day Name, Month Name
 - Create custom columns using 
Date.Year(),Date.Month(), etc. 
🔶 8. Using M Language (Advanced)
M is the Power Query formula language. Every step in Power Query generates a line of M code. Example:
        = Table.SelectRows(Source, each [Age] > 30)
🔶 9. Applied Steps
- Each transformation you perform is recorded.
 - You can:
        
- Rename steps
 - Reorder steps (carefully)
 - Delete or modify any step
 
 
🔶 10. Loading Data
After applying all transformations:
- Click Close & Apply to load data into Power BI.
 - Data is now clean and ready for modeling and visualization.
 
🔶 11. Best Practices in Power Query
- Remove unnecessary columns early to reduce memory.
 - Use descriptive names for steps and columns.
 - Avoid hardcoding values (use parameters instead).
 - Minimize the number of steps for performance.
 - Use staging queries to simplify complex transformations.
 
0 Comments